On Algorithms for Sparse Multi-factor NMF
نویسندگان
چکیده
Nonnegative matrix factorization (NMF) is a popular data analysis method, the objective of which is to approximate a matrix with all nonnegative components into the product of two nonnegative matrices. In this work, we describe a new simple and efficient algorithm for multi-factor nonnegative matrix factorization (mfNMF) problem that generalizes the original NMF problem to more than two factors. Furthermore, we extend the mfNMF algorithm to incorporate a regularizer based on the Dirichlet distribution to encourage the sparsity of the components of the obtained factors. Our sparse mfNMF algorithm affords a closed form and an intuitive interpretation, and is more efficient in comparison with previous works that use fix point iterations. We demonstrate the effectiveness and efficiency of our algorithms on both synthetic and real data sets.
منابع مشابه
Regularized Alternating Least Squares Algorithms for Non-negative Matrix/Tensor Factorization
Nonnegative Matrix and Tensor Factorization (NMF/NTF) and Sparse Component Analysis (SCA) have already found many potential applications, especially in multi-way Blind Source Separation (BSS), multi-dimensional data analysis, model reduction and sparse signal/image representations. In this paper we propose a family of the modified Regularized Alternating Least Squares (RALS) algorithms for NMF/...
متن کاملFast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations
Nonnegative matrix factorization (NMF) and its extensions such as Nonnegative Tensor Factorization (NTF) have become prominent techniques for blind sources separation (BSS), analysis of image databases, data mining and other information retrieval and clustering applications. In this paper we propose a family of efficient algorithms for NMF/NTF, as well as sparse nonnegative coding and represent...
متن کاملSparse NMF – half-baked or well done?
Non-negative matrix factorization (NMF) has been a popular method for modeling audio signals, in particular for single-channel source separation. An important factor in the success of NMF-based algorithms is the “quality” of the basis functions that are obtained from training data. In order to model rich signals such as speech or wide ranges of non-stationary noises, NMF typically requires usin...
متن کاملNovel Multi-layer Non-negative Tensor Factorization with Sparsity Constraints
In this paper we present a new method of 3D non-negative tensor factorization (NTF) that is robust in the presence of noise and has many potential applications, including multi-way blind source separation (BSS), multi-sensory or multi-dimensional data analysis, and sparse image coding. We consider alphaand beta-divergences as error (cost) functions and derive three different algorithms: (1) mul...
متن کاملHierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization
In the paper we present new Alternating Least Squares (ALS) algorithms for Nonnegative Matrix Factorization (NMF) and their extensions to 3D Nonnegative Tensor Factorization (NTF) that are robust in the presence of noise and have many potential applications, including multi-way Blind Source Separation (BSS), multi-sensory or multi-dimensional data analysis, and nonnegative neural sparse coding....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013